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Abstract— This paper presents a method for creating evalua-
tion functions that efficiently promote coordination in a multi-
agent system, allowing single-agent evolutionary computation
techniques to be extended to multi-agent domains. While this
problem can be addressed directly by treating the entire multi-
agent system as a large single agent, the search space is
prohibitively large in most cases. Instead, the proposed method
focuses on having each agent use its own evolutionary compu-
tation method to maximize its own evaluation function. There
are two fundamental issue in this approach: 1) how to create an
evaluation function for an agent that is aligned with the global
evaluation function and 2) how to create an evaluation function
that is sensitive to the fitness changes of the agent, while relatively
insensitive to the fitness changes of other agents. If the first issue
is not addressed, the evolved agents will not coordinate well. If the
second issue is not addressed, the collective evolutionary process
will be inefficient and the system will be slow to converge to good
solutions. This paper shows how to construct evaluation functions
that resolve these issues in dynamic, noisy and communication-
limited multi-agent environments. On a rover coordination prob-
lem, a control policy evolved using aligned and member-sensitive
evaluations outperforms global evaluation methods by up to
400%. More notably, in the presence of a larger number of
rovers or rovers with noisy and communication limited sensors,
the proposed method outperforms global evaluation by a higher
percentage than in noise-free conditions with a small number of
rovers.

Index Terms— evolution strategies, game theory, multi-agent
systems.

I. INTRODUCTION

In many continuous control tasks such as pole balancing,
robot navigation and rocket control, using evolutionary com-
putation methods to develop controllers based on neural net-
works has provided successful results [3], [4], [5]. Extending
those successes to distributed domains such as coordinating
multiple robots, controlling constellations of satellites, and
routing over a data network promises significant application
opportunities [6], [7], [8]. The goal in such distributed control
tasks is to evolve a large set of agents that collectively strive
to maximize a global evaluation function [9], [10], [11]. In
this paper we focus on a set of data gathering rovers whose
task is to maximize the aggregate information collected by all
the rovers.

Approaching the design of a multi-agent system directly by
an evolutionary algorithm (e.g., having a population of multi-
agent controllers and having the evolutionary operators work
directly on the multi-agent controllers to produce a solution
with high global fitness) is appealing but impractical at best
and impossible at worst. The search space for such an approach
is simply too large for all but the simplest problems. A more

promising solution is to evolve control policies for individual
agents by having each of them use their own fitness evaluation
function. The key issue in such an approach is to ensure that
the agent fitness evaluation function possesses the following
two properties: 1) it is aligned with the global evaluation
function, ensuring that the agents maximize their own fitness
do not hinder one another and hurt the fitness of the full
system; and 2) it is sensitive to the fitness of the agent,
ensuring that it provides the right selective pressure on the
agent (i.e., it limits the impact of other agents in the fitness
evaluation function).

Our domain has a number of properties that make it
particularly difficult for evolutionary algorithms:

1) The environment is dynamic, meaning that the condi-
tions under which the agents evolve changes with time.
The agents need to evolve general control policies, rather
than specific policies tuned to their current environment.

2) The agents’ sensors are noisy, meaning that the signals
they receive from the environment are not reliable. The
agents need to demonstrate that the control policies are
not sensitive to such fluctuations in sensor readings

3) The agents have restrictions on their sensing abilities,
meaning that the information they have access to is
limited. The agents need to formulate policies that
satisfy the global evaluation function based on limited,
local information.

4) The number of agents in the system can be large. The
agents need to decouple the impact of other agents from
their fitness functions.

This paper provides methods to evolve control policies in
dynamic, noisy environments for large collectives of agents
with limited communication capabilities. In Section II we
discuss the properties needed for multi-agent evaluation func-
tions and how to evolve agents using evaluation functions
possessing such properties along with a discussion of related
work. In section III we present the “Rover Problem” where
a planetary rovers in a collective use neural networks to
determine their movements based on a continuous-valued array
of sensor inputs. Section IV presents the performance of the
multi-rover system evolved using rover evaluation functions
in dynamic, noisy and communication limited domains. The
results show the effectiveness of the rovers in gathering
information is 400% higher with properly derived rover fitness
functions than in rovers using a global evaluation function.
Finally Section V we discuss the implication of these results
and their applicability to different domains.
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II. EVOLVING IN MULTI-AGENT SYSTEMS

Designing control policies for multi-agent systems through
evolution can generally be approached in one of the following
three ways:

1) One can operate direcly over the entire multi-agent
system, treating a single control policy over all agents
as an instance of a solution and operate on populations
of full-system control policies. In this case, the standard
evolutionary algorithms are used to select for the full-
system control policy that best satisfies a predetermined
global evaluation function.

2) One can operate over agents, treating each agent’s
control policy as an instance of a solution and operate
on populations of single-agent control policies. In this
case, the evolutionary algorithms are used to select
a control policy based on how a given agent using
that control policy satisfies the predetermined global
evaluation function.

3) One can operate over agents, treating each agent’s con-
trol policy as an instance of a solution and operate on
populations of singe-agents control policies. In this case,
the evolutionary algorithms are used to select a control
policy based on how a given agent satisfies using that
control policy a specialized agent evaluation function
tuned to the fitness of that agent.

Note that the last two methods are similar in that each agent
evolves its own control policy from its own population of
policies as shown in Figure 1. These last two methods differ
only in the reward being used.

The first method presents a computationally daunting task in
all but the simplest problems. Finding good control strategies
is difficult enough for single controllers, but the search space
become prohibitively large when they are concatenated into an
“individual” representing the full multi-agent system. Even if
good agents are present in the system, there is no mechanism
for isolating and selecting them when the collective to which
they belong performs poorly. As a consequence, this approach
is practically unworkable in large continuous domains.

The second method addresses part of the issue: Because the
agents in the multi-agent system are evolved independently, it
avoids the explosion of the state space. However, this method
introduces a new problem: How is an agent’s evolution guided
when the evaluation function depends on the fitness of all the
other agents? When there are few agents, this method provides
good solutions, but as the number of agents increases, this
problem becomes more and more acute. As a consequence,
this approach, though preferable to the first approach in some
ways, is unlikely to provide good solutions when there are
many agents

The third method provides a specialized agent evaluation
function for each agent. This approach enables us to create
fitness evaluation functions that are more tailored to a specific
agent, but introduces a new twist to the problem: How does
one ensure that the specialized agent evaluation functions are
aligned with the global evaluation function? In other words,
the fundamental question is how to guarantee that the evolved
multi-agent system using agent evaluation functions will have

Fig. 1. Evolution Process for Single Agent. An agent chooses a control
policy from its own population of control policies. It then uses it for control.
After evaluating the control policy’s effectiveness, the agent updates its
population.

a high fitness with respect to the global evaluation function.
In this paper we discuss the second and third approaches,
focusing on how to select agent evaluation function in a formal
manner as discussed below.

A. Agent Evaluation Function Properties

Agent-specific evaluations need to relate to the global
evaluation function in a particular way for a multi-agent
system to evolve properly. Fortunately by looking at two
particular properties of this relation, we can create agent-
specific evaluations that will lead to high global performance.
We will now formally defines these properties.

Let the global evaluation function be given by G(z), where
z is the state of the full system (e.g., the position of all
the agents in the system, along with their relevant internal
parameters and the state of the environment). Let the agent
evaluation function for agent i be given by gi(z). First we
want the private evaluation functions of each agent to have
high factoredness with respect to G, intuitively meaning that
an action taken by an agent that improves its private evaluation
function also improves the global evaluation function (i.e.
G and gi are aligned). Formally, the degree of factoredness
between gi and G is given by:

Fgi =

∫
z

∫
z′ u[(gi(z) − gi(z′)) (G(z) − G(z′))]dz′dz∫

z

∫
z′ dz′dz

(1)

where z′ is a state which only differs from z in the state of
agent i, and u[x] is the unit step function, equal to 1 when
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x > 0. Intuitively, a high degree of factoredness between gi

and G means that a agent evolved to maximize gi will also
maximize G.

Second, the agent evaluation function must be more sen-
sitive to changes in that agent’s fitness than to changes in
the fitness of other agents in the collective. Formally we can
quantify the agent-sensitivity of evaluation function gi, at z
as:

λi,gi
(z) = Ez′

[
‖gi(z) − gi(z − zi + z′i)‖
‖gi(z) − gi(z′ − z′i + zi)‖

]
(2)

where Ez′ [·] provides the expected value possible values of z′,
and (z − zi + z′i) notation specifies the state vector where the
components of agent i have been removed from state z and
replaced by the components of agent i from state z′. So at a
given state z, the higher the agent-sensitivity, the more gi(z)
depends on changes to the state of agent i, i.e., the better the
associated signal-to-noise ratio for i. Intuitively then, higher
agent-sensitivity means there is “cleaner” (e.g., less noisy)
selective pressure on agent i.

As an example, consider the case where the agent evaluation
function of each agent is set to the global evaluation function,
meaning that each agent is evaluated based on the fitness of
the full collective (e.g., approach 2 discussed in Section II).
Such a system will be fully factored by the definition of
Equation 1. However, the agent fitness functions will have
low agent-sensitivity (the fitness of each agent depends on the
fitness of all other agents).

B. Difference Evaluation Functions

Let us now focus on improving the agent-sensitivity of
the evaluation functions. To that end, consider difference
evaluation functions [9], which are of the form:

Di ≡ G(z) − G(z−i + ci) (3)

where z−i contains all the states on which agent i has no effect,
and ci is a fixed vector. In other words, all the components of
z that are affected by agent i are replaced with the fixed vector
ci. Such difference evaluation functions are fully factored no
matter what the choice of ci, because the second term does
not depend on i’s states [9] (e.g., D and G will have the
same derivative with respect to zi). Furthermore, they usually
have far better agent-sensitivity than does a global evaluation
function, because the second term of D removes some of the
effect of other agents (i.e., noise) from i’s evaluation function.
In many situations it is possible to use a ci that is equivalent
to taking agent i out of the system. Intuitively this causes the
second term of the difference evaluation function to evaluate
the fitness of the system without i and therefore D evaluates
the agent’s contribution to the global evaluation.

Though for linear evaluation functions Di simply cancels
out the effect of other agents in computing agent i’s evaluation
function, its applicability is not restricted to such functions.
In fact, it can be applied to any linear or non-linear global
utility function. However, its effectiveness is dependent on
the domain and the interaction among the agent evaluation
functions. At best, it fully cancels the effect of all other agents.
At worst, it reduces to the global evaluation function, unable

to remove any terms (e.g., when z−i is empty, meaning that
agent i effects all states). In most real world applications,
it falls somewhere in between, and has been successfully
used in many domains including agent coordination, satellite
control, data routing, job scheduling and congestion games [6],
[12], [9]. Also note that the computation of Di is a “virtual”
operation in that agent i computes the impact of its not being
in the system. There is no need to re-evolve the system for
each agent to compute its Di, and computationally it is often
easier to compute than the global evaluation function [12].
Indeed in the problem presented in this paper, for agent i, Di

is easier to compute than G is (see details in Section IV).

C. Related Work

Evolutionary computation has a long history of success in
singe agent and multi-agent control problems [13], [14], [15],
[16], [17], [18]. Advances in evolutionary computation meth-
ods in single agent domains tend to result from improvements
in search methods. In [14] this is accomplished through fuzzy
rules in a helicopter control problem, while in [13] cellular
encoding is used to improve performance on pole-balancing
control. Similarly [15] addresses planetary rover control by
having genetic algorithms search through a space of plans
generated from a planning algorithm.

Evolutionary computation has also been applied to multi-
agent domains. In [19] and [20] game theory was used with
evolutionary computation in the prisoner’s dilemma problem
for two-agent and N-agents respectively. In [21] evolutionary
methods were used in the domain of scheduling constellations
of satellites. Additional advances in evolutionary computation
for multi-agent control have been accomplished through the
use of domain specific fitness functions. Ant colony algo-
rithms [22] solve the coordination problem by utilizing “ant
trails” that provide implicit fitness functions resulting in good
performance in path-finding domains. In [16], the algorithm
takes advantage of a large number of agents to speed up the
evolution process in certain domains, but uses greedy fitness
functions that are not generally factored. In [17] beliefs about
about other agents are update through global and hand-tailored
fitness functions. Also outside of evolutionary computation,
coordination between a set of mobile robots has been accom-
plished through the use of hand-tailored rewards designed to
prevent greedy behavior [23]. While highly successful in many
domains all of these methods differ from the methods used in
this paper in that they lack a general framework for efficient
evolution in multi-agent systems.

III. CONTINUOUS ROVER PROBLEM

In this section, we show how evolutionary computation with
the difference evaluation function can be used effectively in
the Rover Problem1. In this problem, a collective of rovers
on a two dimensional plane is trying to observe points of
interests (POIs). Each POI has a value associated with it
and each observation of a POI yields an observation value
inversely related to the distance the rover is from the POI. In

1This problem was first presented in [6].
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this paper the distance metric will be the squared Euclidean
norm, bounded by a minimum observation distance, δmin:2

δ(x, y) = min{‖x − y‖2, δ2
min} . (4)

The global evaluation function is given by:

G =
∑

t

∑
j

Vj

mini δ(Lj , Li,t)
, (5)

where Vj is the value of POI j, Lj is the location of POI j
and Li,t is the location of rover i at time t. Intuitively, while
any rover can observe any POI, as far as the global evaluation
function is concerned, only the closest observation matters3.

Rover Sensor

POI Sensor

Fig. 2. Diagram of a Rover’s Sensor Inputs. The world is broken up into
four quadrants relative to rover’s position. In each quadrant one sensor senses
points of interests, while the other sensor senses other rovers.

A. Rover Capabilities

At every time step, the rovers sense the world through
eight continuous sensors. From a rover’s point of view, the
world is divided up into four quadrants relative to the rover’s
orientation, with two sensors per quadrant (see Figure 2). For
each quadrant, the first sensor returns a function of the POIs in
the quadrant at time t. Specifically the first sensor for quadrant
q returns the sum of the values of the POIs in its quadrant
divided by their squared distance to the rover and scaled by
the angle between the POI and the center of the quadrant:

s1,q,j,t =
∑
j∈Jq

Vj

δ(Lj , Li,t)

(
1 − |θj,q|

90

)
(6)

where Jq is the set of observable POIs in quadrant q and |θj,q|
is the magnitude of the angle between POI j and the center
of the quadrant. The second sensor returns the sum of square

2The square Euclidean norm is appropriate for many natural phenomenon,
such as light and signal attenuation. However any other type of distance metric
could also be used as required by the problem domain. The minimum distance
is included to prevent singularities when a rover is very close to a POI.

3Similar evaluation functions could also be made where there are many
different levels of information gain depending on the position of the rover.
For example 3-D imaging may utilize different images of the same object,
taken by two different rovers.

distances from a rover to all the other rovers in the quadrant
at time t scaled by the angle:

s2,q,i,t =
∑

i′∈Nq

1
δ(Li′ , Li,t)

(
1 − |θi′,q|

90

)
(7)

where Nq is the set of rovers in quadrant q and |θi′,q| is the
magnitude of the angle between rover i′ and the center of the
quadrant.

The sensor space is broken down into four regions to facil-
itate the input-output mapping. There is a trade-off between
the granularity of the regions and the dimensionality of the
input space. In some domains the tradeoffs may be such that
it is preferable to have more or fewer than four sensor regions.
Also, even though this paper assumes that there are actually
two sensors present in each region at all times, in real problems
there may be only two sensors on the rover, and they do a
sensor sweep at 90 degree increments at the beginning of every
time step.

dx

dy

Fig. 3. Diagram of a Rover’s Movement. At each time step the rover has
two continuous outputs (dx, dy) giving the magnitude of the motion in a two
directional plane relative to the rover’s orientation.

B. Rover Control Strategies

With four quadrants and two sensors per quadrant, there
are a total of eight continuous inputs. This eight dimensional
sensor vector constitutes the state space for a rover. At each
time step the rover uses its state to compute a two dimensional
output. This output represents the x, y movement relative to
the rover’s location and orientation. Figure 3 displays the
orientation of a rover’s output space.

The mapping from rover state to rover output is done
through a Multi Layer Perceptron (MLP), with eight input
units, ten hidden units and two output units 4. The MLP uses
a sigmoid activation function, therefore the outputs are limited
to the range (0, 1). The actual rover motions dx and dy, are
determined by normalizing and scaling the MLP output by the
maximum distance the rover can move in one time step. More

4Note that other forms of continuous reinforcement learners could also be
used instead of evolutionary neural networks. However neural networks are
ideal for this domain given the continuous inputs and bounded continuous
outputs.
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precisely, we have:

dx = dmax(o1 − 0.5)
dy = dmax(o2 − 0.5)

where dmax is the maximum distance the rover can move in
one time step, o1 is the value of the first output unit, and o2

is the value of the second output unit.

C. Rover Selection

The MLP for a rover is selected using an evolutionary
algorithm as highlighted in approaches two and three in
Section II. In this case, each rover has a population of MLPs.
At each N time steps (N set to 15 in these experiments), the
rover uses ε-greedy selection (ε = 0.1) to determine which
MLP it will use (e.g., it it selects the best MLP from its
population with 90% probability and a random MLP from
its population with 10% probability). The selected MLP is
then mutated by adding a value sampled from the Cauchy
Distribution (with scale parameter equal to 0.3) to each weight,
and is used for those N steps. At the end of those N steps,
the MLP’s performance is evaluated by the rover’s evaluation
function and re-inserted into its population of MLPs, at which
time, the poorest performing member of the population is
deleted. Both the global evaluation for system performance
and rover evaluation for MLP selection is computed using
an N-step window, meaning that the rovers only receive an
evaluation after N steps. The psuedocode for this process is
as follows:

1. At t=0 initialize N=10 MLPs
2. Pick an MLP using e-greedy alg (e=.1)
3. Randomly modify MLP (mutation)
4. Use MLP to control agent for 15 steps
5. Evaluate MLP performance
6. Re-insert MLP into pool
7. Delete worst MLP from pool
8. Go to step 2

While this is not a sophisticated evolutionary algorithm,
it is ideal in this work since our purpose is to demonstrate
the impact of principled evaluation functions selection on the
performance of a collective. Even so, this algorithm has shown
to be effective if the evaluation function used by the rovers is
factored with G and has high rover-sensitivity. We expect more
advanced algorithms from evolutionary computation, used in
conjunction with these same evaluation functions, to improve
the perform collective further.

D. Evolving Control Strategies in a Collective

The key to success in this approach is to determine the
correct rover evaluation functions. In this work we test three
different evaluation function for rover selection. The first
evaluation function is the global evaluation function (G),

which when implemented results in approach two discussed
in Section II:

G(L) =
∑

t

∑
j

Vj

mini δ(Lj , Li,t)
(8)

The second evaluation function is the “perfectly rover-
sensitive” evaluation function (P):

Pi(L) =
∑

t

∑
j

Vj

δ(Lj , Li,t)
(9)

The P evaluation function is equivalent to the global evaluation
function in the single rover problem. In a collective of rover
setting, it has infinite rover-sensitivity (in the way rover sensi-
tivity is defined in Section II). This is because the P evaluation
function for a rover is not affected by the states of the
other rovers, and thus the denominator of Equation 2 is zero.
However the P evaluation function is not factored. Intuitively P
and G offer opposite benefits, since G is by definition factored,
but has poor rover-sensitivity. The final evaluation function is
the difference evaluation function. It does not have as high
rover-sensitivity as P, but is still factored like G. For the rover
problem, the difference evaluation function, D, becomes:

Di(L) = G(L) − G(L − Li)

=
∑

t

∑
j

Ij,i,t(z)
[

Vj

δ(Lj , Li,t)
− Vj

δ(Lj , Lkj ,t)

]
,

where kj is the second closest rover to POI j and Ij,i,t(z) is
an indicator function, returning one if and only if rover i is
the closest rover to POI j at time t. The second term of the D
is equal to the value of all the information collected if rover i
were not in the system. Note that for all time steps where i is
not the closest rover to any POI, the subtraction leaves zero.
As mentioned in Section II-B, the difference evaluation in this
case is easier to compute as long as rover i knows the position
and distance of the closest rover to each POI it can see. In
that regard it requires knowledge about the position of fewer
rovers than if it were to use the global evaluation function.

In the presence of communication limitations, it is not
always possible for a rover to compute its exact Di, nor is it
possible for it to compute G. In such cases, Di can be compute
based on local information with minor modifications, such as
limiting the radius of observing other rovers in the system.
This has the net effect or reducing the factoredness of the
evaluation function while increasing its rover-sensitivity.

IV. RESULTS

We performed extensive simulation to test the effectiveness
of the different rover evaluation function under a wide variety
of environmental conditions and rover capabilities. The first
set of experiments was performed in an episodic environ-
ment, which shows the most salient scaling characteristics
of the evaluation functions. The second set of experiments
was performed in a more realistic non-episodic environment
containing sensor noise, controller noise and communication
limitations. In all these experiments, each rover had a pop-
ulation of MLPs of size 10. The world was 75 units long
and 75 units wide. All of the rovers started the experiment
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at the center of the world. Unless otherwise state as in the
scaling experiments, there were 30 rovers and 30 POIs in the
simulations. The maximum distance the rovers could move
in one direction during a time step, dmax, was set to 3. The
rovers could not move beyond the bounds of the world. The
minimum observation distance, δmin, was equal to 5. All
results presented were averaged over one hundred trials (except
for the seventy rover domains, which were averaged over thirty
trials).

A. Episodic Environment

In the first set of experiments the environment was
“episodic” (multi-trial) in that at the end of a fixed time
interval the position of the rovers and POIs are reset. In most
episodic domains, the environment is reset to a fixed starting
configuration at the beginning of the episode. However, to
make this problem more difficult, we reset the POIs to new
random positions at the beginning of each trial. By placing
the POIs this way, the rovers have to learn a general policy
on how to efficiently navigate using their sensors, and cannot
form a specific policy to a single environmental configuration.
While episodic domains are less realistic than the non-episodic
ones discussed later, they are useful in highlighting the salient
properties of the evaluation functions. All results were aver-
aged over at least one hundred independent trials (except for
the seventy agent runs where there were thirty trials). For each
experiment and trial the weights of the neural network were
set to random using the Cauchy distribution (parameter of 0.5).
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Fig. 4. Performance of a 30-rover collective for all three evaluation functions
in episodic environment. Difference evaluation function provides the best
collective performance because it is both factored and rover-sensitive.

Figure 4 shows that rovers using D performed best in this
scenario. Rovers using D were effective in generalizing the
knowledge gained from exploring previous POI configurations
and applying that knowledge to new POI configurations. In
contrast, rovers using the P rewards were especially ineffective
in this scenario. We attribute this to the congested nature of the
problem, where the rovers competed rather than cooperating
with each other. Since a rover’s P rewards only returns the
value of what that rover observes, a rover using the P rewards
tends to move towards the highest valued POI in its area.

However all the other rovers in that vicinity are also moving
towards the same high-valued POI, and thus many other POIs
are not properly observed.
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Fig. 5. Scaling properties of the three evaluation functions in episodic
environment. The D evaluation function not only outperforms the alternatives,
but the margin by which it outperforms them increases as the size of the
collective goes up.

Figure 5 shows how varying the number of agents affects the
performance of the system for different evaluation functions.
The scaling was done between five and seventy agents with
the number of POIs being equal to the number of agents.
The performance values were then normalized to the thirty
agent case to account for the total number of POIs in the
system (results were multiplied by 30/n for a scale with n
agents). The results shows that agents using the D evaluation
function performed best for all number of agents. In fact the
more agents there were, the more the system benefited from D
evaluation as compared to the other evaluation functions. The
performance of the systems using G and P evaluations func-
tions quickly deteriorated as the number of agents increased. In
the case of the G, this decrease was caused by the learnability
of the evaluation function decreasing as the number of agents
increased. In large systems it was difficult for an agent to
discern its effect on G from the effects of all the other agents.
In the case of P the performance decrease was caused by an
increase in the amount of competition between agents as the
number of agents went up.

B. Non-episodic Environment

In these experiments all evolution occurs within a single
trial. The environment and the rover locations are never reset,
so rovers have to evolve continuously based on their existing
conditions Also the environment was dynamic, meaning that
the POI locations and values continuously changed with time.
In these experiments there were as many POIs as rovers, and
the value of each POI was set to between three and five using a
uniformly random distribution. In these experiments, each POI
disappeared with probability 2.5%, and another one appeared
with the same probability at 15 time step intervals. Because
the experiments were run for 3000 time steps, the initial and
final environments had little similarities.
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Though episodic learning is useful in domains where the
simulated environment closely matches the environment in
which the rovers will operate, this approach has limited
applicability in general. A more desirable approach is for the
rovers to evolve efficient policies that are solely based on their
sensor inputs and not on the specific configuration of the POIs.
The dynamic environment experiments reported here explore
this premise and provide rover control policies that can be
generalized from one set of POIs to another, regardless of
how significantly the environment changes. Figures 6 shows an
instance of change in the environment throughout a simulation.
The final POI set is not particularly close to the initial POI set
and the rovers are forced to focus on the sensor input-output
mappings rather than focus on regions in the (x, y) plane.

t=10 t=120

t=1500
Rovers

continuously

evolve in

changing

environment

Fig. 6. Sample POI Placement. Left-Top: Environment at time = 10.
Right-Top: Environment at time = 120. Bottom: Environment at time = 1500.
Environment at time step 10 is similar to environment at time step 120, but
significantly different than environment at time step 1500. Rovers evolve
continuously in single changing environment (no “episodes” or “trials”).
Environment and rover locations are never reset. Rovers must to able to
use their control policies evolved from earlier time step, in future changed
environments.

Note that while it is tempting to compare the relative
performance of an evaluation function in episodic domains
as compared to in non-episodic domains, this comparison
is difficult. In the episodic case, evaluation is done on an
episode where the rovers start at a fixed location and move
for a fixed number of time steps. In contrast, evaluation in
the non-episodic case is done for a window of time where
the rovers do not begin the window at their initial locations
except at the very beginning of the trial. This difference
results in very different learning curves. For example in the
episodic case random rovers have a flat performance curve
since they start every episode in the same location and perform
a similar pattern of actions in every episode. In contrast, the
performance of random rovers improves with time in the non-

episodic case as they randomly spread out from their initial
starting location into the environment.

C. Evolution in Noise Free Environment

The first set of experiments tested the performance of the
three evaluation functions in a dynamic noise-free environment
for 30 rovers. Figure 7 shows the performance of each eval-
uation function. In all cases, performance is measured by the
same global evaluation function, regardless of the evaluation
function used to evolve the system. All three evaluation
functions performed adequately in this instance, though Di

outperformed both P and G.
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Fig. 7. Performance of a 30-rover collective for all three evaluation func-
tions in noise-free non-episodic environment. Difference evaluation function
provides the best collective performance because it is both factored and rover-
sensitive.

The evolution of this system also demonstrate the differ-
ent properties of the rover evaluation functions. After initial
improvements, the system with the G evaluation function
improves slowly. This is because the G evaluation function
has low rover-sensitivity. Because the fitness of each rover
depends on the state of all other rovers, the noise in the
system overwhelms the evaluation function. P on the other
hand has a different problem: After an initial improvement, the
performance of systems with this evaluation function decline.
This is because though P has high rover-selectivity, it is not
fully factored with the global evaluation function. This means
that rovers selected to improve P do not necessarily improve
G. D on the other hand is both factored and has high rover-
sensitivity. As a consequence, it continues to improve well
into the simulation as the fitness signal the rovers receive are
not swamped by the states of other rovers in the system. This
simulation highlights the need for having evaluation function
that are both factored with the global evaluation function and
have high rover-sensitivity. Having one or the other is not
sufficient.

D. Scaling in Noise-free Environments

The second set of experiments focuses on the scaling
properties of the three evaluation functions in a dynamic
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noise-free environment. Figure 8 shows the performance of
each evaluation function at t=3000 for a collective of 10 to
70 rovers. For each different collective size, the results are
qualitatively similar to those reported above, except where
there are only 5 rovers, in which case P performs as well as G.
This is not surprising since with so few rovers, there are almost
no interactions among the rovers, and in as large a space as
the one used here, the 5 rovers act almost independently.
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Fig. 8. Scaling properties of the three evaluation functions in non-episodic
environment. The D evaluation function not only outperforms the alternatives,
but the margin by which it outperforms them increases as the size of the
collective goes up.

As the size of the collective increases though, an interesting
pattern emerges: The performance of both P and G drop
at a faster rate than that of D. Again, this is because G
has low rover-sensitivity and thus the problem becomes more
pronounced as the number of rovers increases. Similarly, as
the number of rovers increases, P becomes less and less
factored. D on the other hand handles the increasing number of
rovers quite effectively. Because the second term in Equation 3
removes the impact of other rovers from rover i, increasing
the number of rovers does very little to limit the effectiveness
of this rover evaluation function. This is a powerful results
suggesting that D is well suited to evolve large collectives
in this and similar domains where the interaction among the
rovers prevents both G and P from performing well. This
results also supports the intuition expressed in Section II that
approach two (i.e., evolving rovers based on the fitness of the
full collective) is ill-suited to evolving effective collectives in
all but the smallest examples.

E. Evolution in Noisy Environment

The third set of experiments tested the performance of the
three evaluation functions in a dynamic environment for 30
rovers with noisy sensors. Figure 9 shows the performance
of each evaluation function when both the input sensors and
the output values of the rovers have 5% noise added. All
three evaluation functions handle the noise well. This result is
encouraging in that it shows that not only simple evaluation
functions such as P can handle moderate amounts of noise in
their sensors and outputs, but so can D. In other words, taking

considering the impact of other rovers to yield a factored
evaluation function does not cause to compound moderate
noise in the system and overwhelm the rover evaluation.
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Fig. 9. Performance of a 30-rover collective for all three evaluation functions
when the rover sensors and outputs have 5% noise.

Figure 10 shows the noise sensitivity of the three different
evaluation functions. The performance is reported as a function
of additive noise to sensors as the percentage shown on the
x-axis (e.g., 0.5 means the magnitude of the added noise is
half that of the sensor value.) The results are shown as the
D is the most sensitive to high levels of noise, though even
at 80% noise it still far outperforms both G and P . This
is an encouraging result in the power of the D evaluation
function is that it “cleans up” the evaluation function for a
rover (e.g., it has high rover-sensitivity). Adding noise, starts
to cancel this property of D, but even when half the signal
being noise does not prevent D from far outperforming D and
P . Interestingly, rovers using P actually perform marginally
better as noise increases, demonstrating the importance of
factoredness. Adding noise to the system actually hindered
these rovers from learning some counter-productive actions.
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Fig. 10. Sensitivity of the three evaluation functions to the degree of noise
in their sensors.
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F. Evolution with Communication Limitations

The fourth set of experiments tested the performance of the
three evaluation functions in a dynamic environment where
not only the rover sensors were noisy, but the rovers were
subject to communication limitations. Figure 11 shows the
performance of all three evaluation function when the rovers
were only aware of other rovers when they were within a
radius of 4 units from their current location. This amounts to
the rovers being able to communicate with only 1% of the grid.
(Because P is not affected by communication restrictions, its
performance is the same as that of Figure 7.)

The performance of D is almost identical to that of full
communication D. G on the other hand suffers significantly.
The most important observation is that communication limited
G is no longer factored with respect to the global evaluation
function. Though the rover-sensitivity of G goes up in this
case, the drop in factoredness is more significant and as a
consequence collectives evolved using G cannot handle the
limited communication domain.
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Fig. 11. Results for noisy domain under communication limitations. Rovers
can only see other rovers covering an area of 3% of the domain. Difference
evaluation is superior since it is both factored and rover-sensitive.

Figure 12 expands on this issue by showing the dependence
of all three evaluation function on the communication radius
for the rovers (P is flat since rovers using P ignore all
other rovers). Using D provides better performance across
the board and the performance of D does not degrade until
the communication radius is dropped to 2 units. This is a
severe restriction that practically cuts the rover from other
rovers in the system. G on the other hand needs a rather large
communication radius (over 20) to outperform the collectives
evolved using P . This results is significant in that it shows that
D can be effectively used in many practical information-poor
domains where neither G nor “full” D as given in Equation 3
can be accurately computed.

Another interesting phenomenon appears in the results pre-
sented in Figure 12, where there is a dip in the performance
of the collective when the communication radius is at 10 units
for both D and G (the “bowl” is wider for G than D, but
it is the same effect). This phenomenon is caused by the
interaction between the degree of factoredness of the eval-
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Fig. 12. Sensitivity of the three evaluation functions to the degree of commu-
nication limitations. Difference evaluation is not affected by communication
limitations by as much as global evaluation.

uation functions and their rover-specificity. At the maximum
communication radius (no limitations) D is highly factored
and has high rover-sensitivity. Reducing the communication
radius starts to reduce the factoredness, while increasing
the rover-sensitivity. However, the rate at which these two
properties change is not identical. At a communication radius
of 10, the drop in factoredness has outpaced the gains in
rover-sensitivity and the performance of the collective suffers.
When the communication radius drops to 5, the increase in
rover-sensitivity compensates for the drop in factoredness.
This interaction among the rover-sensitivity and factoredness
is domain dependent and has also been observed in previous
application of collectives [8], [11].

In addition to measuring the effect of communication
limitations between rovers, we also measure the effect on
communication limitations on both rovers and POIs, where
the evaluation functions only used information within a fixed
radius from the rover. The results show in Figure 13 show that
this additional communication limitation did not significantly
affect the performance of rovers using the D evaluation. How-
ever, the decrease in information available actually increase the
performance of rovers using both the P and G evaluation func-
tions. This is not surprising in the case of G since the increase
in learnability caused by the communication limitation was
shown to allow for an increase in performance as previously
shown in Figure 12. In contrast the P evaluation already has
infinite learnabiliy. Instead decrease in communication caused
the evaluation to become more factored. As shown in figure 14,
as the communication limitation is reduced the performance
of P gets steadily worse.

V. DISCUSSION

Extending the success of evolutionary algorithms in con-
tinuous single-controler domains to large, distributed multi-
controller domains has been a challenging endeavor. Un-
fortunately the direct approach of having a population of
entire systems and applying the evolutionary algorithm to
that population results in a prohibitively large search space
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Fig. 13. Results for noisy domain under increased communication limitations.
Rovers can only see other rovers or POIs covering an area of 3% of the
domain. Difference evaluation is superior since it is both factored and rover-
sensitive.
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Fig. 14. Sensitivity of the three evaluation functions to the degree of commu-
nication limitations. Difference evaluation is not affected by communication
limitations by as much as global evaluation.

in most cases. As an alternative, this paper presents a method
for providing rover specific evaluation functions to directly
evolve individual rovers in system. The fundamental issue in
this approach is in determining the rover specific evaluation
functions that are both aligned with the global evaluation
function and are as sensitive as possible to changes in the
fitness of each member.

In dynamic, noise-free environments rovers using the dif-
ference evaluation function D, derived from the theory of
collectives, were able to achieve high levels of performance
because the evaluation function was both factored and highly
rover-sensitive. These rovers performed better than rovers
using the non-factored perfectly rover-sensitive evaluation and
more than 400% better (over random rovers) than rovers using
the hard to learn global evaluations.

We then extended these results to rovers with noisy sensors,
rovers with limited communication capabilities and larger
multi-agent systems. In each instance, the system evolved us-
ing D performed better than alternative and in most cases (e.g.,

larger collectives, communication limited rovers) the gains
due to D increase as the conditions worsened. These results
show the power of using factored and rover-sensitive fitness
evaluation functions, which allow evolutionary computation
methods to be successfully applied to large distributed systems
in real world applications where communication among the
rovers cannot be maintained or where the rover sensors cannot
be noise-free.
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